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ABSTRACT

The applicaton of simulation techniques provides a convenient and useful
means for studying and developing sighature analysis schemes to describe
orbiting body configuration, orientation and motion.

This paper discusses a simulation of the overall body motion characterized
by the orbital and local motion about the center of mass. This motion is rela-
ted to the observations made by ground stations and provides orientation of the
total motion in the antenna axes systems and orientation of the lines of sight
relative to the ground.

Since only the basic characteristic motions are required and exacting
simulation to some existing satellite is not necessary, certain simplifications
are introduced. These include omission of perturbations and observational
errors and the elimination of a true time requirement and a time based
progression reference.

The emphasis here is on a description of the equations, relations, and
transformations of the simulation model. The computer program based on
this simulation model is described in a separate report.
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1.0 INTRODUCTION

The overall motion of a satellits is characterized by its
orbital motioa and local mction about its csnter of mass. It is of
interest to discern both these motions from ground viewing stations.
Thus it is desired to relate the motion to observations at a complex
of earth stations each of which totally positions the body in space
relative to its line of sight

For a givzn :ystem and opesration mode, correlation of the observa-
tions to the body motion can provide a method for developing signature
analysis techniqu2: for deszribiang body configuration, orientation,
and motion, Simulation of the bcdy motion and measuring techniques
provides a convenient approach for carrying out such a study.

This pap=2r will be restrictad to a discussion of the simulation
of the body motion only., It will relate this motion as a final output
to a receiving aafenna ax1: systzm along tha line of sight, What
is discussed for one =1te carries over to any other site,

The equaticns. rzlaticos. and transformations regquired in the
consideration of overall motion have been considered in earlier internal
reports by the author. The latter reference includes a simulation
of the resulting scattering matrix from stored scattering data and sets
up radar outputs for variocus polarization modes, This radar simulation
also includes the effect of Faraday rctartion and noise.

In a computer program many variations are possible, These include
differences in describing nh> ctatioa, orbit, and their combination
for observation. The present paper presents a somewhat simplified ver-
sion, as compared to earlier reports by the author, of the motion simulation.

Since only the basic moticns are required. no perturbations
or obsarvational srror: arz iacluded. Again, since it is not the
intention here to =imulate motion of ary existing satellite as close
as possibla, accournting for truz time, taking time as a progression

reference, and sclving the transcendental Kepler equation (see section

T A description of the program, alrzady completed, will be given in a

subsequent report,



on orbital motion; also become unnecessary.

Thus, using a revolving spherical earth and earth surface fixed
site locations (earlier internal reports of the author comment on
ellipsoidal earth and nonzero altitude stations), the orientation of
body fixed coordinates with respect to antenna coordinates are deter-
mined with time Thzse detzrminatiovns are specified in terms of
three orientatiou angles.  in addition, the orientation of the station
line of sight ralative to the ground and the station to body range
are provided In the radar case, these angles are used to look up
stored scatteriag dara obrained z1thor from measurement or calculation,

Boch stabilized aond unscabi!ized motion of the body are considered.
It is 1n the late=r, no torque, case that the simulacion of local motion
enters. The stabilized modes of major importance, spin stabilized,
horizon stabilized, and 2arth centered stabilized, are accounted for

by establishing the proper orientaclion.

2,0 THE SIMULATICN MODEL
The basic rtechnique of tne simulation 1nvolves a sequence of six
coordinate transformations. ihe coordinate systems dealt with are

designatea in order as rollows,

1 geometrical bodv axes, {b'y‘ describes body geometry and
7 symmetriest

2. inertial axes 4b}, describes conveniently body motion
2 about center of mass

3. angular momentum, {{}, used as a reference with respect

" tc body local motion

4. orbital, {%}, used as a reference with respect
) to earth motion
{

5, geocentric, ﬁg}, used as a reference with respect
) to earth motion
P

o. topocentric, 15}, moves with earth and locates the
) site(s)
s N

7. radar, 17}, moves with radar and accounts for

antenna orientation

t In the radar cas2, this provides a refzrence to which scattering data

is related in terms of a radar measurcment coordinate system r'}. Details

are given in an internal report by the author as well as in reference 1.
2



With perturbations on orbital and local motion due to, for example,
earth oblateness, drag, solar system influences, solar radiation, and gravity-
magnetic torques omitted, the {é}, {g}, and {E} systems are inertial.t
Also a Keplerian orbit in a true square law force field is used. In
calculating the earth rotation rate wg, account must be taken of the
earth revolution which effectively increases the rotation of the {s}
frame with respect to the {g} frame, for existing satellite simulatéon.
There are six linear transformations relating each coordinate
system with the one which follows it in the list above. These trans-

formations are thus designated:

' ~
Th,b Ty, T T2 e Te o0 Tg o0 Top

The relation of the {b”} system to the {b} system can be specified or

calculated from body mass data from diagonalization of the inertia

tensor., T, %, T and T are time varying where T, ~ carries the
) g5 S, s &
local motion, T carries earth rotation and T_ r reflects orbital
s P

) 2 3
motion which is specified by the radius vector R. in the {{f system,
=
Local motion is specified by movement of the ij inertial axis system

with respect to the 1%} system, The overall orientation of the body
s i
axes ﬁb'r to the radar system {r( is given by the product of linear

transformations trom which three orientation angles are determined.

T

T =T ' T T IE Tb,g‘ b'b

A brief discussion related to the different transformations is
appropriate prior to presenting the overall simulation logic.

Each of the transformations can be given with respect to a
coordinate system as a 3 x 3 matrix, Ta . relating the o system to

P i
the b system., More precisely, Ta converts the coordinates of a

~

2t Sk A
vector in the {a} to its coordinates in the {:} system, T , on

9o

I
the other hand, relates the basis vectors of the id} system from the

basis vectors of the {a} system,

TAdditional detail is given in an internal report bv the author.

3



In general

e

T

Certain of the T& 8 are considered composed of factor trans-
bl

IR

[
~

It is sometimes easier to consider the T

a,3

in terms of the

.8 transformations as successive axes moveménts.
k]

formations each of which are pure rotations (in some plane)’T(), S0

that (TQ)r = Ty,

y3

Yb(Ie)

Then
_.~ ]
Ta,B TG,B (and so Ta
T
b, b
’ Azbl
,"l Ys
Zb(Ig)
LY
)
L
R
\ \
I
|
I1 . J
| k < o
[ s ;/"QZRH
.
“/,, 1
/
Xb'

-1
T Prime is transpose and ( ) is

inverse

ok §



G Gy O
Ty = | B B 8| = (o ad]
Y1 Ya Ya

o, Oy, Oy are the direction cosines of Xb onto {b'f
B1, Bz, By are the direction cosines of Y, onto {5']

Y1, Y2, Ys are the direction cosines of Zb onto {b'}

The I,, I,, I signify the moments of inertia along the correspond-
ing principal moments of inertia axes Xb, Yb’ and Zb respectively.
The b'} system has its coordinate axes along directions determined by

body geometry and symmetries. In general the {S} and {b'} systems

b,b is effected in a number

will not coincide., The specification of T
of ways,

1, By inserting as input data,

2. By calculation from body mass and configuration data,

3. By specification as identity (T I).

b'b
The calculation, if performed, is done so only in the torqueless,

unstabilized mode, For all stabilized modes it is sufficient to

consider no difference between the {b} and {b'} systems (T = 1)

'b
3
with controlled orientations taken with respect to the b'F system,

Tal

T, =
b s g 7 J\B‘B
line of nodes
' is a column vector with components &y, By, y; etc. Indeed q, 0f, a!

are eigenvectors of the moment of inertia tensor.
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is the direction of the angular momentum vector of local motion,

fixed in inertial space. The %, , I. vectors form a right handed 1

system and are specified with respect to the 1" as noted later.

lhe bBuler angles 8, ¥, ¢ measure the motion about the center of
mass of the body inertia axes lbf relative to the fixed in space system
1 r The line of nodes is the intersection of the (Xb, Yb) plane and
the (%}, E;) plane, A description of the equation describing the Eule:

angles as functions of time is given below under the saction loucal

motion. We have V; )
T =T 5 TR (8 Tls (-6) T & (-0 ¥ o=ey - m/2
v
ey + '?/2 5
v v . £ v
cos(=¢) sin(-¢) 0y 1 0 . \ {cos(- ‘f) sin(-v¥)
. v 6
= [-sin(-¢) cos(-¢) 0 ‘ 0 cos(-9) sin(-0) | |-sin(- V) cos(-V)
v
0 0 1) 0 -sin(-9) (-8 } 0
~sin ¢  -cos @ 0 /1 0 0 Lsin ¥ cos ¥ O
=[ cosy -sin 0 0 cos 8 -sin © {[-cos * -sin'¥ 0
0 0 1 0 sin © cos © 0 0 1/
(X (x!
(l) Y, E : / o
i L (-¥) takes - Yb’ into 1Ybf
Z
\Zy) b
]
Xé Xb
4 '~(2)(-K) takes Y/ into Y
b, b b
Zb €a
X )]
Tb ?(q)(-(‘b/) takes < Y" into 3 Ea/
i =1

,_
[N
DX

&

t In general the angle between Xj and &~ @+Y as 6~0.

0
0



For spin stabilized mode, Z Z, is fixed in the {%} system and

= h
Y = ¢ (the spin rate about Zg) is fixed.

v v
cos ¥ -sin Y 0
. k4 L
Then Tb’g~— sin Y cos Y 0
0 0 1t
v v v v o
(i.e., ®8=0, ¢ =0, Y = Yo + YAL)

For horizon stabilized mode, Zbua Zb is parallel to R§ and thus the {E}

system is bypassed and

] v v oV ‘
Tb T = 1 (i.e., 8 =9 =Y =0)
For earth centered stabilized mode, Zb'= Zb is parallel to R. and
v 2
thus similarly, L (i.e.,8=¢ =V =0)
Ty ot
£,8
A7
4-‘5':1

E; (in plane of

: =
/ 21l 32)

| > 2,

um
-

€, (not in plane of &, E,)



Since rotation of tne(zl, Z;)plane about E; is arbitrary, we choose
TE,% to be given only by the two angles & and ¢z. (In fact, ¢(0),
which measures the initial rotatinn of the {bf system about Eé, is
specified and arb%trary in any case.) &y is in the direction of
perigee from the i;} origin (earth center), &, 1is normal to the orbic

plane, and §; forms a right handed coordinate inercial system.

cos Gy -sin ¢y O\/ cos oy O -sin &,
=~ 2 ~ 1y

- ] .~ ) 2 - s R
Tem Ty gm Tyt Ty, e slsingg coseg O 0 10

0 0 1/\ sin¢; 0 cos g
For unstabilized mo%ion @; and Q; are spacifiea as iunput.
For spin stabilized motion &; and €y are specified as input,
For horizon stubilized motioa @ = T/2 is specified and Ug= @,
(places Zb,in parallel with ﬁg)
For earth centerea stabilized a; = ™/2 is sp=cified and o, = ¢,

g)

(places Zb.in parallel wich R

The time variation of the radius vector of the orbiting body, R_,

(111

and the decerminatiou of the angles ¢, and @zare given below in the

section on orbital motion.

T%.g:

un
w

g line of nodes



The geocentric coordinate system {g} is chosen in an arbitrary way
since initial time is of no consequence for the purpose of this
simulation. In other words, the Xg direction is taken as the direction
in space made by the earth radius passing through the equator at 0°
longitude at an arbitrary initial time, to, which is taken as zero,

The Z is the direction from earth center through the north pole at t,-

Yg completes a right handed inertial system. With no perturbations i,

{. are time invariant where:

it = inclination
A = argument of perigeet
i. = right ascension of ascending node
cos s. =sin . O 1 0 0 'cos A -sin A 0O
T, = T. =|sin: cos( 0}l0 cos d —sin W sin A cos A O
5,8 o5
0 0 1 0 sin U cos [ 0 0 i
T 5 7
g’s A /:)
,!',._
Site location
p = earth radius (assumed
fi:ed)
g
X
g

€34T/ 2 = )

T Perigee or apogee are convenient choices of orbit epochs in an orbit

period.

and



The Zs direction is normal to earth surface pointing away from the earth
at the site while XS and YS decermine the taangent plane at the site

with XS along a meridiaa to the north and YS pointing west where

= longitude of site tO < A~ 21m)
7 = measures latitude of site (-11/2 = msn/2)
fcos 3 0 sin B [cos @ sina O
I {J
i = ! 0 1 0 -sin cos Q 0
g,s A
\sin 3 0 cosb 0 0 1
where @ = WAt + A + 11 ; o
(with t  arbitrary we usually take
A
£ =07
=T -m/2
i
S,r
\
n v Ry
= !
o - '
4 \ //71
d(’ 8 \...,_,' r \
G -_ﬁ"// ! €5
R | i
T Btk T
Yr4’/f 1 S : //,
€ = =
1 tan (€. /€ ) se, A
Xg

3 fok - 2
TWith simulation of actual orbits, fixing Ig} in space at t _ consistent

with astronomical data would mean, for example, taking tO as vernal

equinox time,

10



RS is the radius (line of sight) vector to the orbiting body expre
in the {s} system, RS and the look angles 8 and 8 will be consii,
in the section on orbital motion,

The Yr of the radar system lies in the (XS, Yg) plane, that
remains horizontal, It then is the axis about which elevation, @>

changed. 8 measures azimuth change,

A A
cos © 0 sin 5 cos @ sin 8 0
T = 0 1 0 -sin & cos ¢ 0
s,T “ ~
-sin © 0 cos © 0 0 1
T
bg¥ JLzbi
Zy
| a
[ Pl
[ 8
| Yr
| ~ -~ /
I f'—"'_-?’l - 4
| i /
' N 2 =Y.
| /’/ ~ / b
N
joe -
;2 3 xr
//// =3 N
s \\ ¥
Xb_ ( <
line of nodes T
T =T T Ty T T

{ In the radar case, the line of nodes coincides with the Xr' ot the
radar measuring system {r'} which is a rotation of {r} about Z . of
-B3. Y, and Y,' are horizontal axes in their respective systems
9§ and 3 are drawn to be consistent with an adopted use in the {r'}

system for scattering measurements (see referencel).

11



ol
T =  a,

as

co

= |si

This gives

a;, = cos
ag; =-sin |
ag, = sin
alz = coes
ag, =-sia
a;p =-sin
a;5 = sin
a,, = cos
a,3 = CcOS
Then £, =

~2

8, =
) - ~1 "':."b
8, ¢, and

The overall simulation logic can now Lc conveniently displayed schemati-

1 ap a1z
1 dzp a3
1 4ag 433 /
5 S sin 5, 04 71 0
. ' !
n E, cos 25 010  cos o
0 0 1/\0 -sin 3
Sg cos B, -sin B3 cos B; sin By
” e 2
S, cos p -cos 8, cos 3, sin
©y sin B,
3 sin +sin 5 cos B, cos
3 2 3
i |
3, sin B, +cos 3; cos B, cos
By cos B,
53 sin 3,
8.y sin 8;
<
L
2 2
T (l-az3) g i
tan ———— |=cos  a

=il
tan

331')
P

tan * ( A2 >
23

=((3m/2-8),9=P,
2

sin 3; j-sin B,

/cos Py sdn Se

3 -~
cos £,

\

v 0 0

\\

2, are the final antenna body orientation angles,

cally by the following diagram.

local motion is appropriate.

Of course either stabilized motion or

For convenience both are shown.

12
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symbol (¥) designates alternate paths. The logic flow chart for the

actual program appears in a subsequent report,

3.0 ORBITAL MOTION

With an inverse square law radial force field from earth center,

the equation for motion in the {g} system becomes

R, +d

vg
w’ =
XAt
1]
=

with d = constant, accounting for gravity and the mass of the two

body system. In the metric system, for example

d = 3.9858 x 10° km®/sec?
This results in planar motion, that is R x R = constant so that

R =a Ro +b RO; with a and b scalar functions of time and
Ro and Ro evaluations at some time tg.

Choosing tg to be the time of perigee and the {E} coordinate system

then places Ro along £, , Ro along £, and gives

%

a(cos E-e) &, + a(l-ea) sin E €,

R (t)
ke

%

and R.(t) -a E sin E g, + a(l—ea) E cos E §,

LBAY

where a is the semimajor axis of the elliptical orbtit and e is the
ellipticity of the orbit. E(t), the eccentric anomoly

is related to t in Kepler's equation

E-e sin E = (d/aa)% Lt At =t - té
(E = (d/aa)% /(l-e cos E) )

14



where t; is time of perigee crossing. If initial time t_ is not té

the Kepler equation is slightly more complex but straightforward. we
take t, = té. Also equal increments in At produce unequal increments
in E and vice versa. Solving for E from t is difficult whereas solving
for t from E is direct. The programmed version discussed in a
subsequent working paper uses equal increments in E as reference.

For simulations of actual orbits where motion is referenced to real
times, solution of the Kepler equation for E can be accomplished using

an iterative scheme such as Newton—Raphson.+

From the expressions for R, and R, we have

S
= g [ fl-ee)% sin E
Gg = Gan cos E-e ]
2. %
e = -1 [ ~-(l-e”) J
= L tan E
T

*

aorbit

~—

>
,;qi\hh 5
perigee

L
Let f(E) = (E-e sin E) -A ; A(t) = (d/aa)z(t-to)
£(E) = df/dE = l-e cos E
With E, the nth estimate of true E, let h, be such that

. £(E )
£(E,) + h, £(Ey) =0, i.e,, hy = - —
£(E,)

We take E_ , ; = hy, +E and repeat the process for h_., until

lf(En)l < =, a preselected small number,

155



Now T = B .
} KE\ ’) ,7, i .z o Rg ~
= ike F LY. g where as noted before, o is earth
radius rtaken away from earth center,
‘\-: = a -+ -.; g ilz
EE 22
then 6 2 s S r LT g, = R X. etc
’ | €3 i 3 s .
N 2
B ) a ( = )
- rd
: A o~
The ¢eomitry ot 4 and ¢ was =howo in the discussion of Ts & in the

3

previvas s2actio,

A
Of various acquisition test: a useful and simple scheme compares ©

A
against some 6; such that

;, target visible

1, target not visible

If (ii) hclds,procead along orbit until (i) holds,

If (i) holds,continue with main calculations.

4.0 LOCAL MOTION

The movement of any vector fixed in the body and so moving with
the {B} system with respect to the {E} system can be described by the
three Euler angles 6(t), ¥(t), and ¢(t) defined in the discussion of
Tb;gn Indeed, these angles satisfy the following Euler differential
equations, for zero applied torque.

We call the plunged condition of the radar with @ + T rather than 8
(also possible). Then for X, above the (Xg, Y,) plane in the normal
condition, X; and KRy have projections in the plane in opposite direc-
tions whereas in the plunged condition X, is below the (XS, Y;) plane
and the two projections lie in the same direction.

16



. (Il'Iz) . . 3 )
@ =———— =M sin 0 cos Y sin ¥ = nutation rate (ici s

I, L
1 L2 A8 variations)
¢ = L cosc ¥ + L sin° ¥ = precession rate
Il IE
. /M M 2 M & Ty
Y = \-E$ - El cos” Y - Eé sin Y‘/ cos 8 = spin rate

where for generalityT we take I, 2 I, 2 I as the three moments of
inertia with respect to the principal axes of inertia Xb’ Yy, 4y, and

M is the magnitude of the angular momentum, M along E;.

Denoting the corresponding angular velocities as 51(t), EQ(L) anc

?;(t) with directions along the Xy, Y, Zp axes we have

= Is {,(0) :I , -1[ I, vy, (0) }
- . il S v = S g
8(0) cos [ N 3 7(0) tan T, €, (0) .
ET a
and M =¥ Loe ey M o= IS (R 9
il i 2o
i =1 i=1

@(0) is arbitrary and is specified. Note initial values of 6 an

reflect initial values of é, é, and @.

The solutions to the Euler equations (see reference 2,) are ovbtain.d

in series which allow for approximations to any desired accurac:

tt

These solutions are:

' In all (.ses each moment of inertia alung an axis 15 Lese Lns

equal to the sum of the moments of inertia along the other two

orthogonal axes., For definetness the inequalities are used.

i In order that the expressions for 68(t), ¥(t), and ¢(t) be consis. .nt
with initial conditions, the t used in these expressions should be

shifted with respect to true (orbit) time,

17



a(t) = co:-:{£§inh Y‘qzsinh 3y +.+.)(14+2q cos ZJt+2q4cos e, e }
\(cosh v+q@cosh 3y +++:)(1-2q cos 2ut+2q*cos 4ut -«+.)

S Gia/x) S e/ 2XK)
1.5, (ia/2K) 9, (\t/ )

from cos 9 =

(SDXX () are the four types of theta functions and K is the complete

elliptic integral of the first kind,)

(1+2q cosh 2vy+2q*cosh 4y +++*)(sin ut—g?sin 3Jt+---)}

s - "1{
) aGe (I-Zqzcosh 2Y+2q400sh QY-...)(cos ut+qdcos 3ut+.-.)

Dootial2Z) Sy, e/ %K)
from tan ¥ = . (ia/2K) Q)0 (At/2K)

2ig(t) _ { .M q sinh 2y-2q*sinh s e & }
= =) i (At [Il A ( 1-2q cosh 2y+2q“cosh 4y +-+-+ )]
2i [ M A r9 61 (ia/ XK) }
= Jie) rexp { LT TR §,, (Ga/x)y C©
where
. -7k
q=k°/16 + k*/32 +--+ ; q2 = e K /K; modulus of K is k.
. I,-1 M- I.C 3
G/ g iy e C=3 1 0f
12‘13 (‘Il (J‘Mz) i=1
= modulus of K' = 1 - &
- s (Iz=Iz)CI,-M)
MUsICR |, k=
2K 1, 1515
.1/
y = ma/K, (3%)2 =1+ 2q+ 2q* + 2 +---

{IQ(IIC-M?)} ) fgoo(ia/ZK)

I, (IoC-M°) Qo (1a/2K)
AC-ia
)

BUE) = By~

At+ia
Sor C)
B is a constant specified by ¢(0).

18



Together with ¢(0), q, M, and Yy represent a possibly more convenient
input set than Ii’ (1;, i=1,3, 1Indeed for q << 1, a meaningful associa-
tion gives q as a measure of nutation amplitude, AQ, U as a measure of

spin rate, @, and Y as a measure of precession angle, 8., Writing
L200(8)_ _2i(81 + ¢3)

M A fgél (1a/2K)

2ig; _ M
FE), G = (7 tax g )t

with e

Loy o G20
UBAC) =k

then ¢,(t) = constant, measures average rate of ¢ variation (precession

rate) and ¢; (t) accounts for (periodic) variations about the average
B (=8,).

The frequency of the 8 and Y periodicities = %F'

The frequency of the ¢; component of ¢ = %.

The frequency of the ¢, component of ¢ = ﬂéa.

Various interesting special cases occur. For example constant
precession (¢, = 0) is obtained about E; with spin about Zb when I, = I,.
(See reference 1l.) For unstabilized bodies the particular motions of
interest are normally tumbling, precession and nutation. In the long (ti.c)
term, the dominant motion is usually tumbling. All of these motions

represent simplifications of the general motion.
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